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1. intrOductioh t Let x(t) be a Wiener process with

drift V and variance I per unit of time. Charnoff

121 considered the following problem, test

Let x(t) be a Wiener process with drift u and

variance I per unit of time. Flor testing Mi: ul 0 0 At u D)

vs Ai 1 0 with the loss function Jul if the wrong

decision is eaNSe WA 0 otharwiss. C Ot Of obereation
with the loss function Jl if the wrong decision is

per unit time and u has a prior distribution which is
mad and 0 othewise, c cost of obeervation per unit

normal with mean 0 and variance a0. we followed time and o has a prior distribution which is normal with
idea of Bickel and Tshav to obtain a lower bournid for the 2

men u0  and variance cherntoff 3II ehowsd that

Bares risk and showed that this lover bound is Strict as

the Say risk

0 
0 -for all c.

2 1
(1.1) S(u0o J- c2 - (

S 0 For
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By considering the above testing problem with the where T Is the class of all stopping times.

additional information of the magnitude of u, Bickel Using the idea of Blickel and Yahav Il, let us

and Yahav III obtained a lower bound for the Bayes risk consider the following problem of testing,

for the case of u having the improper prior distribution

and conjectured that the lower bound can be attained as H, vs A. u - -lj
0

c4 0. In this note we assume that u has a normal prior

0. By using with luoi for cost of wrong decision and prior dis-

similar techniques as in Bickel and Yahav (1), we tribution P~u - p
0
) - P( - - -" Then the posterior

obtained a lower bound for the eyes risk, then showed cost of wrong decision is

that this lower bound is not asymptotically achievable as

2
0 -0 for all c ,0. it - 1u01 P(X(t)u e 0 JX(t))

2. Lower Bound For Bsyes Riekc From Chernoff 131,
Let

the posterior cost of wrong decision is given 
by

(2.1) Yt - (t+O 
2 
1-/ $ -IO4(-1I4 Afc.t) - i t + ct

-1/2w
21 X(t). Let the posterior risk at To solve the above Bayes problem, we have to find awhere a-(~ 0 ) f~) e h otro ika

time t be, stopping rule i such that

(2.2) R(c,t) - Tt + Ct E(R(Q.T*)]
TtT

we are interested in a stopping rule T
0  

for which
From the property of S.P.R.T we have the following

-|R,1l int L(C 1 lens.

TCT
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Lomas 2.1: The stopping rusle T' Stop the first

X(t) I - a, where *a* is determined by the minimixa-

tion of /3
_____ - -2 -)

-1 -1 -1 1

1u 0 t (14exp(2a UO )) *Cafu 0 1 (l-2(l**xP(2aeUO 1)) + -l(1+ In 55 -l4:

is the optimal stopping rule for the above problem. Proof. lAt

laimma 2.2:

-1/2 -

2 -1/ 
2 2 

ta

where 'a' Is the solution of the minimization problem

Proof: O is a Bayes rule for a symetric problem and in Lemm 2.1. Then should satisfy the relation

hence is sylmetric in v O ulnce

(2.4) 2u3 . €(2-2
"
1 2 In )

U u(Iftc~t ( for all P

We have by using (2.3). (2.4) and %,a 2.1,

Prom it the lemna follows.

Theorems J3, (I(, )ssxp(-s
2
/20 )du

*e -p112 
2 
/2o 2)d 4

1 21/3 3- 1 2/3 (1s-sl * 2tn S)
" 3 

(1 * t -

3 c3K~o . -2ot~ol°1)

(1 41 2%
*

1 * Z
0
2
2  

eapt.c 2 1
/(s-s" 1 

* 2 tn 2)2/30;2 2-S/1ids
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-1 + 2 in 2/ (U + o(1(( ds

- 2- S/3 2/3 0

1(1 - (2-g- 1 2 In x) 4/( +in z-- 1)(1 *2z: 1 z y 2/

* I(Z~di - YOI + o(1)) J t()(=3 + ) 2

, hae.

(2.2 2, .. 2 2.. 1/3 'lch/3 - -~d -J7 x(R(d: - y(l + OMMY -1/3 tftIny

)10R(C 13p25,'/2
0 
2'- 3zd - -1

2/3 'I~~dz4 3 1/3 iny 1Y 1/
3 
* O~y23a

12In32 in 2.4 TWO3d: 3 In- 2/3In)

1/

I I

*12, 1/3 3y 1/3 Inv' 9,2-1 , an va*0((

1 -1 2/3.1-1,13 0(23n)

Proft - ,t Yh8-2- +2 In:2)2/

1/y na / lwex*pf-y(3 *- - 2 In )23z

JI(S(esq(-Yt3-11 *d 2-2 In 3)2 2A Ina--1 e0



From (U.1). Lmm 2.2 and the Theorm, we have the
following corollary to the Theorem.

u- z-
- 1 

* 2 tn z (v/f)
3/ 2

Corollary: I' 5'

immark Consider the came of U having a prior distribution

* in a -t
- 1 

- 1 + in u * O(u
1 

in U) of Lahbeue measure. For any stopping rule T,

1
3,2

"
1 lnhv/) 4 0(v/Y) 3/2 In 7R/Y)) JR(u.")d - tia (2.0 ) (2.

o 
0 52/20 duI

a0

Then

t in. (2.o02) 1/2 B(O02

J ( ) exp(-y(2-z
"1  

+ 2 in w) 2/3)d: a0
-l

Y

- 322 7 w1/2w 3/2(3 tn v _ ]in-, 4 21. dv* So the aes risk vith respect to LZMlelue masure

lnf 7 Bw~.,) amw i iw
2 /
1 c 2'~

/ 3

(n
4 / 3 

tny) r

for all c , 0.

- 12Y 13 3f1/3 in Y+ 
9 2- 

1 
.1/211/2 in Yil 4 o(l)) Here. 21 a2/3 is tme lower 1ound derived in Il1.

Therefor. we hae sbob that Bickel and lahava lower

Prom I) 5). Lamms 2.3 and iama 2.4 we get the TMorem. bound cannot be attained.

I

I - - - ~ -m e -- -' - - 0
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.)'Let x~t be a Wiener proceas with drift 4 and variance~ per unit of time.
For teting H: (j< 0 vs A: i > 0 with the loss function pj if the wrong
decision is made and 0 otherwise, c coat of observation per unit time
,agxd( has a prior distribution which is normal with mean 0 and variance

t2 followed an idea of Bickel and Yahav to obtain a lower bound for

the Bayes risk and showed that this lower bound is strict as' 0O- for
all c.
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